Two-level stochastic search variable selection in GLMs with missing predictors.

نویسندگان

  • Robin Mitra
  • David Dunson
چکیده

Stochastic search variable selection (SSVS) algorithms provide an appealing and widely used approach for searching for good subsets of predictors while simultaneously estimating posterior model probabilities and model-averaged predictive distributions. This article proposes a two-level generalization of SSVS to account for missing predictors while accommodating uncertainty in the relationships between these predictors. Bayesian approaches for allowing predictors that are missing at random require a model on the joint distribution of the predictors. We show that predictive performance can be improved by allowing uncertainty in the specification of predictor relationships in this model. The methods are illustrated through simulation studies and analysis of an epidemiologic data set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Working Paper M09/04 Methodology Two Level Stochastic Search Variable Selection In GLMs With Missing Predictors

Stochastic search variable selection (SSVS) algorithms provide an appealing and widely used approach for searching for good subsets of predictors, while simultaneously estimating posterior model probabilities and model-averaged predictive distributions. This article proposes a two-level generalization of SSVS to account for missing predictors, while accommodating uncertainty in the relationship...

متن کامل

Comparing Stochastic Optimization Methods for Variable Selection in Binary Outcome Prediction, With Application to Health Policy

Traditional variable-selection strategies in generalized linear models (GLMs) seek to optimize a measure of predictive accuracy without regard for the cost of data collection. When the purpose of such model building is the creation of predictive scales to be used in future studies with constrained budgets, the standard approach may not be optimal. We propose a Bayesian decision-theoretic framew...

متن کامل

An efficient stochastic search for Bayesian variable selection with high-dimensional correlated predictors

We present a Bayesian variable selection method for the setting in which the number of independent variables or predictors in a particular dataset is much larger than the available sample size. While most existing methods allow some degree of correlations among predictors but do not consider these correlations for variable selection, our method accounts for correlations among the predictors in ...

متن کامل

Bayesian phylogeography of influenza A/H3N2 for the 2014-15 season in the United States using three frameworks of ancestral state reconstruction

Ancestral state reconstructions in Bayesian phylogeography of virus pandemics have been improved by utilizing a Bayesian stochastic search variable selection (BSSVS) framework. Recently, this framework has been extended to model the transition rate matrix between discrete states as a generalized linear model (GLM) of genetic, geographic, demographic, and environmental predictors of interest to ...

متن کامل

Bayesian Variable Selection with Related Predictors

In data sets with many predictors, algorithms for identifying a good subset of predic-tors are often used. Most such algorithms do not account for any relationships between predictors. For example, stepwise regression might select a model containing an interaction AB but neither main eeect A or B. This paper develops mathematicalrepresentations of this and other relations between predictors, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The international journal of biostatistics

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2010